
The Language StarsepLang

BNF Converter

May 14, 2017

1

This document was automatically generated by the BNF-Converter. It was
generated together with the lexer, the parser, and the abstract syntax module,
which guarantees that the document matches with the implementation of the
language (provided no hand-hacking has taken place).

The lexical structure of StarsepLang

Identifiers

Identifiers Ident are unquoted strings beginning with a letter, followed by any
combination of letters, digits, and the characters ’ reserved words excluded.

Literals

Integer literals Integer are nonempty sequences of digits.
Character literals Char have the form ’c’, where c is any single character.
Double-precision float literals Double have the structure indicated by the

regular expression digit+ ’.’ digit+ (’e’ (’-’)? digit+)? i.e.\ two se-
quences of digits separated by a decimal point, optionally followed by an un-
signed or negative exponent.

String literals String have the form "x"}, where x is any sequence of any
characters except " unless preceded by \.

Reserved words and symbols

The set of reserved words is the set of terminals appearing in the grammar.
Those reserved words that consist of non-letter characters are called symbols,
and they are treated in a different way from those that are similar to identi-
fiers. The lexer follows rules familiar from languages like Haskell, C, and Java,
including longest match and spacing conventions.

The reserved words used in StarsepLang are the following:

assert auto bool char

elif else false float

fn for if in

int let list loop

print return string true

void while

The symbols used in StarsepLang are the following:

2

() , {
} = ++ –
; < > ->
¿

- !
$ && | | ?
: + * /
% <= >= ==
!= += -= *=
/= %=

Comments

Single-line comments begin with #, //.Multiple-line comments are enclosed with
/* and */.

The syntactic structure of StarsepLang

Non-terminals are enclosed between < and >. The symbols -> (production), |
(union) and eps (empty rule) belong to the BNF notation. All other symbols
are terminals.

3

Program -> [FnDef]
FnDef -> Type Ident ([Arg]) Block
[FnDef] -> FnDef

| FnDef [FnDef]
Arg -> Type Ident
[Arg] -> eps

| Arg
| Arg , [Arg]

FunExec -> Ident ([Expr])
Block -> { [Stmt] }
Stmt -> Block

| Oper ;

| while Expr Block
| for Oper ; Expr ; Oper Block
| for Ident in Expr Block
| loop Block
| IfStmt
| IfElseStmt

[Stmt] -> eps
| Stmt [Stmt]

Oper -> Type [Item]
| let [Item]
| auto [Item]
| Ident AssOp Expr
| Ident ++
| Ident --
| return Expr
| return

| FunExec
| print (Expr)

| assert (Expr)

Item -> Ident
| Ident = Expr

[Item] -> Item
| Item , [Item]

IfStmt -> IfStmt elif Expr Block
| if Expr Block

IfElseStmt -> IfStmt else Block
Type -> int

| char

| string

| bool

| float

| void

| fn < [Type] >
| list < Type >

[Type] -> Type
| Type -> [Type]

Expr8 -> FunExec
| Type [[Expr]]
| Ident
| Integer
| Char
| Double
| String
| false

| true

| (Expr)

Expr7 -> - Expr8
| ! Expr8
| Expr8

Expr6 -> Expr6 MulOp Expr7
| Expr7

Expr5 -> Expr5 AddOp Expr6
| Expr6

Expr4 -> Expr5 ++ Expr4
| Expr5 $ Expr4
| Expr5

Expr3 -> Expr3 RelOp Expr4
| Expr4

Expr2 -> Expr3 && Expr2
| Expr3

Expr1 -> Expr2 || Expr1
| Expr2

Expr -> Expr1 ? Expr1 : Expr1
| Expr1

[Expr] -> eps
| Expr
| Expr , [Expr]

AddOp -> +

| -

MulOp -> *

| /

| %

RelOp -> <
| <=
| >
| >=
| ==

| !=

AssOp -> =

| +=

| -=

| *=

| /=

| %=

4

